Expertise-induced amnesia

Expertise-induced amnesia

Sidney Crosby in Vancouver, playing for Team Canada

This phenomenon is based on the assumption that reducing or diverting the amount of attention paid to material being encoded and stored will reduce the quality and quantity of the later retrieval of that material in a form that is explicit and reportable. So, if a well learned skill is stored as a procedural memory, and its retrieval and subsequent performance is mostly unconscious and automatic, there is evidence showing that the explicit recollection of what happened during the performance will be reduced.[27] A recent example illustrates this concept nicely. Immediately following Sidney Crosby’s overtime goal against the USA, winning the 2010 Olympic Gold Medal for Canada in men’s ice hockey, a reporter with TSN did an on-ice interview with Crosby: “ Sid, if you can, just take us through how that goal went in” Crosby replied: “I don’t really remember, I just shot it – I think from around here. That’s all I really remember. I think it went 5-hole, but, um, I didn’t really see it to be honest”.[34] A reported 16.6 million Canadians watched Sidney’s goal, and it’s safe to assume that most of them would have been able to easily recollect the details, but not Crosby; he was immersed in an automatic state that at least temporarily blocked his ability to remember.


Whether a skill is learned explicitly (with attention) or implicitly, each plays a role in the offline consolidation effect. Research suggests that explicit awareness and understanding of the skill being learned during the acquisition process greatly improves the consolidation of procedural memories during sleep.[85] This finding is not surprising, as it is widely accepted that intention and awareness at time of learning enhances the acquisition of most forms memory.


Divided attention

There are several factors that contribute to the exceptional performance of a skill: memory capacities,[17][18] knowledge structures,[19] problem-solving abilities,[20] and attentional abilities.[21]They all play key roles, each with its own degree of importance based on the procedures and skills required, the context, and the intended goals of the performance. Using these individualized abilities to compare how experts and novices differ regarding both cognitive and sensorimotor skills has provided a wealth of insight into what makes an expert excellent, and conversely, what sorts of mechanisms novices lack. Evidence suggests that an often overlooked condition for skill excellence is attentional mechanisms involved in the effective utilization and deployment of procedural memory during the real-time execution of skills. Research suggests that early in skill learning, execution is controlled by a set of unintegrated procedural steps that are held in working memory and attended to one-by-one in a step-by-step fashion.[22][23][24] The problem with this is that attention is a limited resource. Therefore this step-by-step process of controlling task performance occupies attentional capacity which in turn reduces the performer’s ability to focus on other aspects of the performance, such as decision making, fine motor-skills, self-monitoring of energy level and “seeing the field or ice or court”. However, with practice, procedural knowledge develops, which operates largely outside of working memory, and thus allows for skills to be executed more automatically.[23][25] This, of course, has a very positive effect on overall performance by freeing the mind of the need to closely monitor and attend to the more basic, mechanical skills, so that attention can be paid to other processes.[21]

Choking under pressure

It is well established that highly practiced, over-learned skills are performed automatically; they are controlled in real time, supported by procedural memory, require little attention, and operate largely outside of working memory.[26]However, sometimes even experienced and highly skilled performers falter under conditions of stress. This phenomenon is commonly referred to as choking, and serves as a very interesting exception to the general rule that well-learned skills are robust and resistant to deterioration across a wide range of conditions.[27] Although not well understood, it is widely accepted that the underlying cause of choking is performance pressure, which has been defined as an anxious desire to perform very well in a given situation.[27] Choking is most often associated with motor skills, and the most common real-life instances are in sports. We have all seen highly trained professional athletes deteriorate under pressure and perform so poorly that in the moment they seem like beginners. However, choking can occur within any domain that demands a high level of performance involving complex cognitive, verbal or motor skills. “Self-focus” theories suggest that pressure increases anxiety and self-consciousness about performing correctly, which in turn causes an increase in attention paid to the processes directly involved in the execution of the skill.[27] This attention to the step-by-step procedure disrupts the well-learned, automatic (proceduralized) performance. What was once an effortless and unconscious retrieval execution of a procedural memory becomes slow and deliberate.[28][29][30][31] Evidence suggests that the more automated a skill is the more resistant it is to distractions, performance pressure, and subsequent choking. This serves as a good example of the relative durability of procedural memory over episodic memory. In addition to deliberate practice and automization of skills, self-consciousness training has been shown to help with reducing the effect of choking under pressure.[27]

Rising to the occasion

If choking on skill-based or co-ordination oriented tasks requires the pressure of the situation to cause the performer’s increased conscious attention to his or her process of performance, then the reverse can also be true. A relatively unexplored area of scientific research is the concept of clutchness, or more commonly referred to as “rising to the occasion.” One common misconception is that a person must be an expert in order to have consistent success under pressure. On the contrary, implicit knowledge has been hypothesized to only partially mediate the relationship between expertise and performance.[32] It works closely with a perceived control of the task, and can often trump expertise if the performer embodies procedural comfort within the domain. Traditionally, “rising to the occasion” or being “clutch” has been used in reference to sporting feats of particular excellence given the magnitude of the event, however there is increasing awareness to the phenomenon in our everyday life. How one performs under circumstances that do not necessarily present immediate or grave consequence, but do require the performer to actively access a conscious mechanism to perform in unfamiliar or uncomfortable settings, is a concept that may prove educationally beneficial across a variety of disciplines and activities.[33]







For more details on Dopamine, see Dopamine.

Dopamine Pathways in the brain highlighted in Blue

Dopamine is one of the more known neuromodulators involved in procedural memory. Evidence suggests that it may influence neural plasticity in memory systems by adapting brain processing when the environment is changing and an individual is then forced to make a behavioural choice or series of rapid decisions. It is very important in the process of “adaptive navigation,” which serves to help different brain areas respond together during a new situation that has many unknown stimuli and features.[45] Dopamine pathways are dispersed all over the brain and this allows for parallel processing in many structures all at the same time. Currently most research points to the mesocorticolimbic dopamine pathway as the system most related to reward learning and psychological conditioning.[46]


This introduces the idea that for optimal procedural learning, dopamine levels must be balanced.

At the synapse

Recent findings could help explain the relationship between procedural memory, learning and synaptic plasticity at the level of the molecule. One study used small animals lacking normal levels ofCREB family transcription factors to look at the processing of information in the striatum during various learning tasks. Although poorly understood, results show that CREB function is needed at the synapse for linking the acquisition and storage of procedural memory.[47]





This entry was posted in Drafts, Uncategorized. Bookmark the permalink.